

Application

Model HCDR-150 is a heavy duty round industrial control damper with a flanged style frame. It is designed to control airflow and provide shut off in HVAC or industrial process control systems.

Ratings

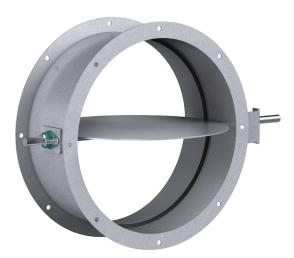
Velocity

Up to 4000 fpm (20.3 m/s)

Pressure

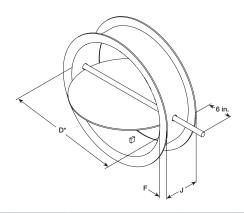
Up to 6 in. wg (1.5 kPa) - differential pressure

Temperature

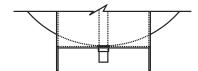

-40° to 400°F (-40° to 204°C)

Construction

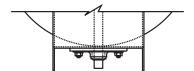
	Standard	Optional		
Frame Material	Painted steel	304SS, 316SS		
Frame Type	Flanged channel	-		
Blade Material	Painted steel	304SS, 316SS		
Blade Seals	None	EPDM or Silicone		
Blade Stop	Pin stop	Rolled bar		
Blade Type	Round butterfly			
Blade Thickness	10 ga. (3.5 mm)			
Axle Bearing	Stainless steel sleeve	External bronze		
Axle Material	Plated steel	303SS, 316SS		
Axle Seals	None	O-ring		
Paint Finishes	Hi Pro Polyester	Hi Temperature Flame Control, Hi Temperature Silver, Industrial Epoxy, Mill finish (304SS, 316SS)		
Mounting Holes	None On centerline, Straddle centerl			


Features

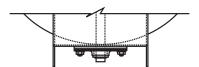
- Wide mounting flanges can be ordered with bolt holes, customized to match your requirements.
- Rolled bar stops are required when blade seal is selected.
- Wide range of actuators available.


Diameter = Actual Inside Dimension

Diameter	Minimum Size	Maximum Size
Inches	4	48
mm	102	1219



Diameter <i>D</i>		Frame	Frame & Flange	Flange	Axle
Inches (mm)		Depth <i>J</i>		Width <i>F</i>	Diameter
Above	Through	Inches (mm)	Gauge (mm)	Inches (mm)	Inches (mm)
3.99	12	6	12	1¼	½
(101)	(305)	(152)	(2.7)	(32)	(13)
12	20	8	12	1½	½
(305)	(508)	(203)	(2.7)	(32)	(13)
20	24	8	12	1½	³ / ₄
(508)	(610)	(203)	(2.7)	(32)	(19)
24	36	8	10	2	³ / ₄
(610)	(914)	(203)	(3.5)	(51)	(19)
36	48	8	10	2	1
(914)	(1219)	(203)	(3.5)	(51)	(25)


Bearing and Shaft Options

Stainless Steel Sleeve Bearing (Standard)

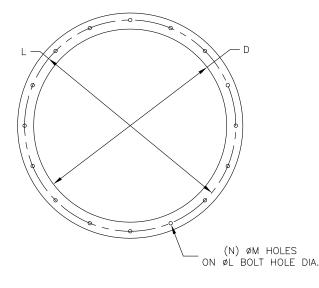
External Mounted Bronze Sleeve Bearing (Optional)

External Mounted Bronze Sleeve Bearing with O-Ring (Optional)

Blade Seal Options (Rolled Bar Blade Stops Required)

Standard - Does not include Blade Seals

Optional - EPDM Blade Seals (250°F [121°C] max.)


Optional - Silicone Rubber Blade Seals (400°F [204°C] max.)

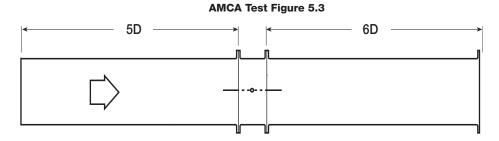
Rolled Bar Blade Stops

Mounting Holes

The recommended bolt hole pattern is shown in the table below. Customer must specify bolt holes that are parallel to the axle centerline or that straddle the axle centerline as shown in the diagrams below. The factory can also provide bolt hole sizes and patterns other than those shown.

Recommended Bolt Hole Pattern (Bolt Holes Parallel to Axle Centerline)						
Diameter Inches (mm)			Mounting	Bolt Circle	Degrees	
Above	Through	Number of Holes	Hole Diameter in. (mm) N	Diameter L	Between Holes	
4 (102)	8 (203)	4	¾ (9.5)	*	90	
8.001 (203)	18 (457)	8	⁷ / ₁₆ (11)	*	45	
18.001 (457)	24 (610)	12	⁷ ∕₁6 (11)	*	30	
24.001 (610)	36 (914)	16	⁷ / ₁₆ (11)	*	22½	
36.001 (914)	58 (1473)	24	⁷ ∕₁6 (11)	*	15	
58.001 (1473)	72 (1829)	32	%16 (14)	*	1111/4	
* Bolt Circle Diameter = Damper Diameter + Flange Height + ½ in (6mm)						

* Bolt Circle Diameter = Damper Diameter + Flange Height + 1/4 in. (6mm)


On Centerline

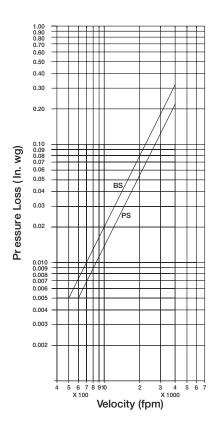
Straddle Centerline

Performance Data

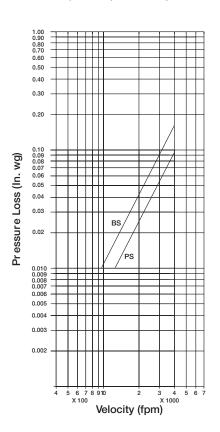
AMCA Test Figure 5.3

Figure 5.3 Illustrates a fully ducted damper. This configuration has low pressure drop because entrance and exit losses are minimized by straight duct runs upstream and downstream of the damper.

Pressure Drop Data

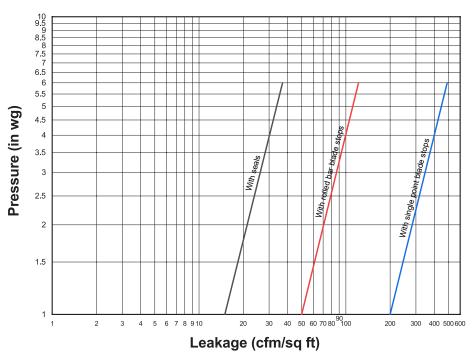

This pressure drop data was conducted in accordance with AMCA Standard 500-D using Test Figure 5.3. All data has been corrected to represent standard air at a density of 0.075 lb/ft³(1.2 kg/m³).

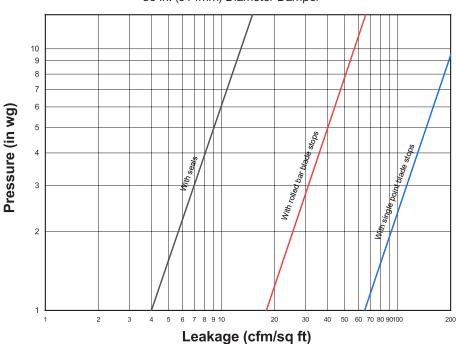
Actual pressure drop found in any HVAC system is a combination of many factors. This pressure drop information along with an analysis of other system influences should be used to estimate actual pressure losses for a damper installed in a given HVAC system.


NOTE: PS refers to damper with standard pin blade stop

BS refers to damper with rolled bar blade stop

Pressure Drop 12 in. (305mm) dia. Damper


Pressure Drop 36 in. (914mm) dia. Damper


Leakage

Damper leakage (with blades fully closed) varies based on the type of blade stops and low leakage seals applied. Model HCDR-150 is available with no seals (standard) or with EPDM or silicone rubber blade seals. Leakage testing was conducted in accordance with AMCA Standard 500-D and is expressed as cfm/ft² of damper face area. All data has been corrected to represent standard air at a density of 0.075 lb/ft³ (1.2 kg/m³).

Leakage12 in. (305mm) Diameter Damper

Leakage 36 in. (914mm) Diameter Damper

INSTALLATION

CATALOG

SELECTION GUIDE

DAMPER SELECTION
GUIDE

SPECIFICATIONS

WARRANTY